CrewAI 是一个框架,用于协调协同实现复杂目标的自治 AI 智能体。借助该框架,您可以通过指定角色、目标和背景故事来定义智能体,然后为其定义任务。
此示例演示了如何构建一个多代理系统,以便使用 Gemini 2.5 Pro 分析客户支持数据,找出问题并提出改进流程的建议,从而生成供首席运营官 (COO) 阅读的报告。
本指南将介绍如何创建一支 AI 智能体的“团队”,他们可以执行以下任务:
- 提取和分析客户支持数据(在此示例中为模拟数据)。
- 找出反复出现的问题和流程瓶颈。
- 提供切实可行的改进建议。
- 将调查结果汇总为适合 COO 的简洁报告。
您需要一个 Gemini API 密钥。如果您还没有 API 密钥,可以在 Google AI Studio 中获取一个。
pip install "crewai[tools]"
将 Gemini API 密钥设置为名为 GEMINI_API_KEY
的环境变量,然后配置 CrewAI 以使用 Gemini 2.5 Pro 模型。
import os
from crewai import LLM
# Read your API key from the environment variable
gemini_api_key = os.getenv("GEMINI_API_KEY")
# Use Gemini 2.5 Pro Experimental model
gemini_llm = LLM(
model='gemini/gemini-2.5-pro-preview-06-05',
api_key=gemini_api_key,
temperature=0.0 # Lower temperature for more consistent results.
)
定义组件
CrewAI 应用是使用工具、代理、任务和 Crew 本身构建的。以下各部分介绍了其中每种方法。
工具
工具是智能体可以用来与外界互动或执行特定操作的功能。在这里,您将定义一个占位符工具来模拟提取客户服务数据。在真实应用中,您需要连接到数据库、API 或文件系统。如需详细了解相关工具,请参阅 CrewAI 工具指南。
from crewai.tools import BaseTool
# Placeholder tool for fetching customer support data
class CustomerSupportDataTool(BaseTool):
name: str = "Customer Support Data Fetcher"
description: str = (
"Fetches recent customer support interactions, tickets, and feedback. "
"Returns a summary string.")
def _run(self, argument: str) -> str:
# In a real scenario, this would query a database or API.
# For this example, return simulated data.
print(f"--- Fetching data for query: {argument} ---")
return (
"""Recent Support Data Summary:
- 50 tickets related to 'login issues'. High resolution time (avg 48h).
- 30 tickets about 'billing discrepancies'. Mostly resolved within 12h.
- 20 tickets on 'feature requests'. Often closed without resolution.
- Frequent feedback mentions 'confusing user interface' for password reset.
- High volume of calls related to 'account verification process'.
- Sentiment analysis shows growing frustration with 'login issues' resolution time.
- Support agent notes indicate difficulty reproducing 'login issues'."""
)
support_data_tool = CustomerSupportDataTool()
代理
代理是团队中的各个 AI 工作者。每个代理都有特定的 role
、goal
、backstory
、分配的 llm
和可选的 tools
。如需详细了解代理,请参阅 CrewAI 代理指南。
from crewai import Agent
# Agent 1: Data analyst
data_analyst = Agent(
role='Customer Support Data Analyst',
goal='Analyze customer support data to identify trends, recurring issues, and key pain points.',
backstory=(
"""You are an expert data analyst specializing in customer support operations.
Your strength lies in identifying patterns and quantifying problems from raw support data."""
),
verbose=True,
allow_delegation=False, # This agent focuses on its specific task
tools=[support_data_tool], # Assign the data fetching tool
llm=gemini_llm # Use the configured Gemini LLM
)
# Agent 2: Process optimizer
process_optimizer = Agent(
role='Process Optimization Specialist',
goal='Identify bottlenecks and inefficiencies in current support processes based on the data analysis. Propose actionable improvements.',
backstory=(
"""You are a specialist in optimizing business processes, particularly in customer support.
You excel at pinpointing root causes of delays and inefficiencies and suggesting concrete solutions."""
),
verbose=True,
allow_delegation=False,
# No tools needed, this agent relies on the context provided by data_analyst.
llm=gemini_llm
)
# Agent 3: Report writer
report_writer = Agent(
role='Executive Report Writer',
goal='Compile the analysis and improvement suggestions into a concise, clear, and actionable report for the COO.',
backstory=(
"""You are a skilled writer adept at creating executive summaries and reports.
You focus on clarity, conciseness, and highlighting the most critical information and recommendations for senior leadership."""
),
verbose=True,
allow_delegation=False,
llm=gemini_llm
)
Tasks
任务用于定义客服人员的具体任务。每项任务都有 description
、expected_output
,并分配给 agent
。默认情况下,任务会依序运行,并包含上一个任务的上下文。如需详细了解任务,请参阅 CrewAI 任务指南。
from crewai import Task
# Task 1: Analyze data
analysis_task = Task(
description=(
"""Fetch and analyze the latest customer support interaction data (tickets, feedback, call logs)
focusing on the last quarter. Identify the top 3-5 recurring issues, quantify their frequency
and impact (e.g., resolution time, customer sentiment). Use the Customer Support Data Fetcher tool."""
),
expected_output=(
"""A summary report detailing the key findings from the customer support data analysis, including:
- Top 3-5 recurring issues with frequency.
- Average resolution times for these issues.
- Key customer pain points mentioned in feedback.
- Any notable trends in sentiment or support agent observations."""
),
agent=data_analyst # Assign task to the data_analyst agent
)
# Task 2: Identify bottlenecks and suggest improvements
optimization_task = Task(
description=(
"""Based on the data analysis report provided by the Data Analyst, identify the primary bottlenecks
in the support processes contributing to the identified issues (especially the top recurring ones).
Propose 2-3 concrete, actionable process improvements to address these bottlenecks.
Consider potential impact and ease of implementation."""
),
expected_output=(
"""A concise list identifying the main process bottlenecks (e.g., lack of documentation for agents,
complex escalation path, UI issues) linked to the key problems.
A list of 2-3 specific, actionable recommendations for process improvement
(e.g., update agent knowledge base, simplify password reset UI, implement proactive monitoring)."""
),
agent=process_optimizer # Assign task to the process_optimizer agent
# This task implicitly uses the output of analysis_task as context
)
# Task 3: Compile COO report
report_task = Task(
description=(
"""Compile the findings from the Data Analyst and the recommendations from the Process Optimization Specialist
into a single, concise executive report for the COO. The report should clearly state:
1. The most critical customer support issues identified (with brief data points).
2. The key process bottlenecks causing these issues.
3. The recommended process improvements.
Ensure the report is easy to understand, focuses on actionable insights, and is formatted professionally."""
),
expected_output=(
"""A well-structured executive report (max 1 page) summarizing the critical support issues,
underlying process bottlenecks, and clear, actionable recommendations for the COO.
Use clear headings and bullet points."""
),
agent=report_writer # Assign task to the report_writer agent
)
圆领
Crew
将代理和任务整合在一起,定义工作流程(例如“顺序”)。
from crewai import Crew, Process
# Define the crew with agents, tasks, and process
support_analysis_crew = Crew(
agents=[data_analyst, process_optimizer, report_writer],
tasks=[analysis_task, optimization_task, report_task],
process=Process.sequential, # Tasks will run sequentially in the order defined
verbose=True
)
运行剧组
最后,使用所有必要的输入启动剧组执行。
# Start the crew's work
print("--- Starting Customer Support Analysis Crew ---")
# The 'inputs' dictionary provides initial context if needed by the first task.
# In this case, the tool simulates data fetching regardless of the input.
result = support_analysis_crew.kickoff(inputs={'data_query': 'last quarter support data'})
print("--- Crew Execution Finished ---")
print("--- Final Report for COO ---")
print(result)
脚本现在将执行。Data Analyst
将使用该工具,Process
Optimizer
将分析发现结果,Report Writer
将编译最终报告,然后将其输出到控制台。verbose=True
设置会显示每个代理的详细思考过程和操作。
如需详细了解 CrewAI,请参阅 CrewAI 简介。